411 research outputs found

    Chemotactic response and adaptation dynamics in Escherichia coli

    Get PDF
    Adaptation of the chemotaxis sensory pathway of the bacterium Escherichia coli is integral for detecting chemicals over a wide range of background concentrations, ultimately allowing cells to swim towards sources of attractant and away from repellents. Its biochemical mechanism based on methylation and demethylation of chemoreceptors has long been known. Despite the importance of adaptation for cell memory and behavior, the dynamics of adaptation are difficult to reconcile with current models of precise adaptation. Here, we follow time courses of signaling in response to concentration step changes of attractant using in vivo fluorescence resonance energy transfer measurements. Specifically, we use a condensed representation of adaptation time courses for efficient evaluation of different adaptation models. To quantitatively explain the data, we finally develop a dynamic model for signaling and adaptation based on the attractant flow in the experiment, signaling by cooperative receptor complexes, and multiple layers of feedback regulation for adaptation. We experimentally confirm the predicted effects of changing the enzyme-expression level and bypassing the negative feedback for demethylation. Our data analysis suggests significant imprecision in adaptation for large additions. Furthermore, our model predicts highly regulated, ultrafast adaptation in response to removal of attractant, which may be useful for fast reorientation of the cell and noise reduction in adaptation.Comment: accepted for publication in PLoS Computational Biology; manuscript (19 pages, 5 figures) and supplementary information; added additional clarification on alternative adaptation models in supplementary informatio

    Quantitative Modeling of Escherichia coli Chemotactic Motion in Environments Varying in Space and Time

    Get PDF
    Escherichia coli chemotactic motion in spatiotemporally varying environments is studied by using a computational model based on a coarse-grained description of the intracellular signaling pathway dynamics. We find that the cell's chemotaxis drift velocity vd is a constant in an exponential attractant concentration gradient [L]∝exp(Gx). vd depends linearly on the exponential gradient G before it saturates when G is larger than a critical value GC. We find that GC is determined by the intracellular adaptation rate kR with a simple scaling law: . The linear dependence of vd on G = d(ln[L])/dx directly demonstrates E. coli's ability in sensing the derivative of the logarithmic attractant concentration. The existence of the limiting gradient GC and its scaling with kR are explained by the underlying intracellular adaptation dynamics and the flagellar motor response characteristics. For individual cells, we find that the overall average run length in an exponential gradient is longer than that in a homogeneous environment, which is caused by the constant kinase activity shift (decrease). The forward runs (up the gradient) are longer than the backward runs, as expected; and depending on the exact gradient, the (shorter) backward runs can be comparable to runs in a spatially homogeneous environment, consistent with previous experiments. In (spatial) ligand gradients that also vary in time, the chemotaxis motion is damped as the frequency ω of the time-varying spatial gradient becomes faster than a critical value ωc, which is controlled by the cell's chemotaxis adaptation rate kR. Finally, our model, with no adjustable parameters, agrees quantitatively with the classical capillary assay experiments where the attractant concentration changes both in space and time. Our model can thus be used to study E. coli chemotaxis behavior in arbitrary spatiotemporally varying environments. Further experiments are suggested to test some of the model predictions

    Differential Affinity and Catalytic Activity of CheZ in E. coli Chemotaxis

    Get PDF
    Push–pull networks, in which two antagonistic enzymes control the activity of a messenger protein, are ubiquitous in signal transduction pathways. A classical example is the chemotaxis system of the bacterium Escherichia coli, in which the kinase CheA and the phosphatase CheZ regulate the phosphorylation level of the messenger protein CheY. Recent experiments suggest that both the kinase and the phosphatase are localized at the receptor cluster, and Vaknin and Berg recently demonstrated that the spatial distribution of the phosphatase can markedly affect the dose–response curves. We argue, using mathematical modeling, that the canonical model of the chemotaxis network cannot explain the experimental observations of Vaknin and Berg. We present a new model, in which a small fraction of the phosphatase is localized at the receptor cluster, while the remainder freely diffuses in the cytoplasm; moreover, the phosphatase at the cluster has a higher binding affinity for the messenger protein and a higher catalytic activity than the phosphatase in the cytoplasm. This model is consistent with a large body of experimental data and can explain many of the experimental observations of Vaknin and Berg. More generally, the combination of differential affinity and catalytic activity provides a generic mechanism for amplifying signals that could be exploited in other two-component signaling systems. If this model is correct, then a number of recent modeling studies, which aim to explain the chemotactic gain in terms of the activity of the receptor cluster, should be reconsidered

    Modeling a bacterial ecosystem through chemotaxis simulation of a single cell

    Get PDF
    International audienceWe present in this paper an artificial life ecosystem in which bacteria are evolved to perform chemotaxis. In this system, surviving bacteria have to overcome the problems of detecting resources (or sensing the environment), modulating their motion to generate a foraging behavior, and communicating with their kin to produce more sophisticated behaviors. A cell’s chemotactic pathway is modulated by a hybrid approach that uses an algebraic model for the receptor clusters activity, an ordinary differential equation for the adaptation dynamics, and a metabolic model that converts nutrients into biomass. The results show some analysis of the motion obtained from some bacteria and their effects on the evolved population behavior. The evolutionary process improves the bacteria’s ability to react to their environment, enhancing their growth and allowing them to better survive. As future work, we propose to investigate the effect of emergent bacterial communication as new species arise, and to explore the dynamics of colonies

    Layer-by-layer surface modification of poly(ether sulfone) membranes using polyelectrolytes and AgCl/TiO2 xerogels

    Get PDF
    In this study, the layer-by-layer (LbL) assembly method was employed to modify a commercial polyethersulfone (PES) membrane by successive adsorption of chitosan and alginate as cationic and anionic polyelectrolytes. To enhance anti-biofouling property, pure, PEG mixed and PEGylated AgCl/TiO2 xerogels were incorporated solely in the top layer of the LbL-modified membranes. Organic and biological foulings were addressed separately using alginate and Escherichia coli bacteria suspensions as the organic and biological model foulants, respectively. LbL-modifying the commercial PES membrane successively with chitosan and alginate polyelectrolyte multilayers prevented organic fouling extensively. In addition, we found that AgCl/TiO2-incorporated membranes show higher water permeability and improved resistance to biological fouling as compared to the PES membrane. Silver amounts in consecutively collected permeate samples were quantified by ICP-MS analysis to assess the stability of AgCl/TiO2-incorporated layers. Silver loss per filtration cycle followed an increasing trend initially, up to a filtration volume totaling 3000L/m2, leading to 4.2% reduction in the immobilized silver amount. After that, silver loss per filtration cycle stabilized at ~7.44μg/L, which extrapolates to ~265 days time-span for the remaining silver to be released at a filtration rate of ~1000L/m2 h. Antibacterial activity tests showed that AgCl/TiO2-incorporated layers do not permit bacterial growth on the membrane surface.European Union (246039

    Predicted Auxiliary Navigation Mechanism of Peritrichously Flagellated Chemotactic Bacteria

    Get PDF
    Chemotactic movement of Escherichia coli is one of the most thoroughly studied paradigms of simple behavior. Due to significant competitive advantage conferred by chemotaxis and to high evolution rates in bacteria, the chemotaxis system is expected to be strongly optimized. Bacteria follow gradients by performing temporal comparisons of chemoeffector concentrations along their runs, a strategy which is most efficient given their size and swimming speed. Concentration differences are detected by a sensory system and transmitted to modulate rotation of flagellar motors, decreasing the probability of a tumble and reorientation if the perceived concentration change during a run is positive. Such regulation of tumble probability is of itself sufficient to explain chemotactic drift of a population up the gradient, and is commonly assumed to be the only navigation mechanism of chemotactic E. coli. Here we use computer simulations to predict existence of an additional mechanism of gradient navigation in E. coli. Based on the experimentally observed dependence of cell tumbling angle on the number of switching motors, we suggest that not only the tumbling probability but also the degree of reorientation during a tumble depend on the swimming direction along the gradient. Although the difference in mean tumbling angles up and down the gradient predicted by our model is small, it results in a dramatic enhancement of the cellular drift velocity along the gradient. We thus demonstrate a new level of optimization in E. coli chemotaxis, which arises from the switching of several flagellar motors and a resulting fine tuning of tumbling angle. Similar strategy is likely to be used by other peritrichously flagellated bacteria, and indicates yet another level of evolutionary development of bacterial chemotaxis

    A Characterization of Scale Invariant Responses in Enzymatic Networks

    Get PDF
    An ubiquitous property of biological sensory systems is adaptation: a step increase in stimulus triggers an initial change in a biochemical or physiological response, followed by a more gradual relaxation toward a basal, pre-stimulus level. Adaptation helps maintain essential variables within acceptable bounds and allows organisms to readjust themselves to an optimum and non-saturating sensitivity range when faced with a prolonged change in their environment. Recently, it was shown theoretically and experimentally that many adapting systems, both at the organism and single-cell level, enjoy a remarkable additional feature: scale invariance, meaning that the initial, transient behavior remains (approximately) the same even when the background signal level is scaled. In this work, we set out to investigate under what conditions a broadly used model of biochemical enzymatic networks will exhibit scale-invariant behavior. An exhaustive computational study led us to discover a new property of surprising simplicity and generality, uniform linearizations with fast output (ULFO), whose validity we show is both necessary and sufficient for scale invariance of enzymatic networks. Based on this study, we go on to develop a mathematical explanation of how ULFO results in scale invariance. Our work provides a surprisingly consistent, simple, and general framework for understanding this phenomenon, and results in concrete experimental predictions

    Noradrenergic Control of Gene Expression and Long-Term Neuronal Adaptation Evoked by Learned Vocalizations in Songbirds

    Get PDF
    Norepinephrine (NE) is thought to play important roles in the consolidation and retrieval of long-term memories, but its role in the processing and memorization of complex acoustic signals used for vocal communication has yet to be determined. We have used a combination of gene expression analysis, electrophysiological recordings and pharmacological manipulations in zebra finches to examine the role of noradrenergic transmission in the brain’s response to birdsong, a learned vocal behavior that shares important features with human speech. We show that noradrenergic transmission is required for both the expression of activity-dependent genes and the long-term maintenance of stimulus-specific electrophysiological adaptation that are induced in central auditory neurons by stimulation with birdsong. Specifically, we show that the caudomedial nidopallium (NCM), an area directly involved in the auditory processing and memorization of birdsong, receives strong noradrenergic innervation. Song-responsive neurons in this area express α-adrenergic receptors and are in close proximity to noradrenergic terminals. We further show that local α-adrenergic antagonism interferes with song-induced gene expression, without affecting spontaneous or evoked electrophysiological activity, thus dissociating the molecular and electrophysiological responses to song. Moreover, α-adrenergic antagonism disrupts the maintenance but not the acquisition of the adapted physiological state. We suggest that the noradrenergic system regulates long-term changes in song-responsive neurons by modulating the gene expression response that is associated with the electrophysiological activation triggered by song. We also suggest that this mechanism may be an important contributor to long-term auditory memories of learned vocalizations

    Challenges in Survey Research

    Full text link
    While being an important and often used research method, survey research has been less often discussed on a methodological level in empirical software engineering than other types of research. This chapter compiles a set of important and challenging issues in survey research based on experiences with several large-scale international surveys. The chapter covers theory building, sampling, invitation and follow-up, statistical as well as qualitative analysis of survey data and the usage of psychometrics in software engineering surveys.Comment: Accepted version of chapter in the upcoming book on Contemporary Empirical Methods in Software Engineering. Update includes revision of typos and additional figures. Last update includes fixing two small issues and typo

    Analytic traveling-wave solutions of the Kardar-Parisi-Zhang interface growing equation with different kind of noise terms

    Full text link
    The one-dimensional Kardar-Parisi-Zhang dynamic interface growth equation with the traveling-wave Ansatz is analyzed. As a new feature additional analytic terms are added. From the mathematical point of view, these can be considered as various noise distribution functions. Six different cases were investigated among others Gaussian, Lorentzian, white or even pink noise. Analytic solutions are evaluated and analyzed for all cases. All results are expressible with various special functions Mathieu, Bessel, Airy or Whittaker functions showing a very rich mathematical structure with some common general characteristics. This study is the continuation of our former work, where the same physical phenomena was investigated with the self-similar Ansatz. The differences and similarities among the various solutions are enlightened.Comment: 14 pages,14 figures. arXiv admin note: text overlap with arXiv:1904.0183
    corecore